Turbotodd

Ruminations on tech, the digital media, and some golf thrown in for good measure.

Archive for the ‘quantum computing’ Category

IBM Announces Quantum Computing Collaboration

leave a comment »

IBM today announced the first clients to tap into its IBM Q early-access commercial quantum computing systems to explore practical applications important to business and science.

They include JPMorgan Chase, Daimler AG, Samsung, JSR Corporation, Barclays, Hitachi Metals, Honda, Nagase, Keio University, Oak Ridge National Lab, Oxford University and University of Melbourne.

These 12 initial organizations join the newly formed IBM Q Network, a collaboration of leading Fortune 500 companies, academic institutions and national research labs working directly with IBM to advance quantum computing. The IBM Q Network will also foster a growing quantum computing ecosystem based on IBM’s open source quantum software and developer tools.

 

The IBM Q Network provides organizations with quantum expertise and resources, and cloud-based access to the most advanced and scalable universal quantum computing systems available, starting with a 20 qubit IBM Q system. IBM also recently built and measured the first working 50 qubit prototype processor.

IBM anticipates that access to this prototype will be offered to IBM Q Network participants in the next generation IBM Q System.

IBM Fosters Growing Quantum Ecosystem

Through the publicly available IBM Q Experience, over 60,000 users have run more than 1.7 million quantum experiments and generated over 35 third-party research publications using the world’s first series of quantum computers available openly on the web.

The IBM Q Experience enables registered users to connect to IBM’s quantum processors via the IBM Cloud, to run algorithms and experiments, work with the individual quantum bits, and explore tutorials and simulations around what might be possible with quantum computing. Developers also have access to IBM’s open quantum software development kit, QISKit, to create and run quantum computing programs.

The IBM Q Experience will also play a significant role in an initiative IBM is undertaking with the Massachusetts Institute of Technology.  IBM will support MIT in producing a leading edge, comprehensive curriculum for executives, engineers, scientists and researchers to understand and leverage the upcoming quantum computing revolution

The first courses are anticipated to go online in the first half of 2018 via the edX platform. The curriculum will include a set of MIT created massive open online courses (MOOCs) that will be offered both for free and for a fee to learners who desire an MIT issued certificate of completion. The curriculum will also include a comprehensive professional development curriculum (MIT ProX courses). These latter courses will include online labs on quantum computing, which will utilize the public IBM Q Experience quantum computers.

In addition to supporting the quantum curriculum, IBM has started working with MIT to explore the intersection of quantum computing and machine learning as part of the recently launched MIT-IBM Watson AI Lab. Together, IBM and MIT scientists are investigating the “Physics of AI”, which involves new research into AI hardware materials, devices and architectures.

Focus areas include using AI to help characterize and improve quantum devices, and researching the use of quantum computing to optimize and speed up machine-learning algorithms and other AI applications.

IBM Research is announcing a series of prizes for professors, lecturers and students who use the IBM Q Experience and QISKit in the classroom or for their research. Awards will be made available for developing open source course materials for a lecture series; building Jupyter Notebook tutorials with QISKit; contributing specific code modules to the open source QISKit SDK and to students who publish a scientific paper that makes use of QISKit. For details visit https://qe-awards.mybluemix.net.

Written by turbotodd

December 14, 2017 at 9:11 am

Posted in 2017, ibm, mit, quantum computing

Qualcomm Board Rejects Broadcom’s Takeover Bid

leave a comment »

Happy Monday.

The Board of Directors for Qualcomm Inc. has rejected Broadcom’s $105 billion takeover bid.

“It is the Board’s unanimous belief that Broadcom’s proposal significantly undervalues Qualcomm relative to the Company’s leadership position in mobile technology and our future growth prospects,” said Paul Jacobs, Executive Chairman and Chairman of the Board of Qualcomm Incorporated.
– via Qualcomm

“No company is better positioned in mobile, IoT, automotive, edge computing and networking within the semiconductor industry.  We are confident in our ability to create significant additional value for our stockholders as we continue our growth in these attractive segments and lead the transition to 5G,” said Steve Mollenkopf, Chief Executive Officer of Qualcomm Incorporated.
– via Qualcomm

Qualcomm stock was up nearly 1 percent in early morning trading.

If you’re interested in all things cyber spooks and shadows, The New York Times feature on the NSA’s Tailored Access Operations’ recent fate is a must (but quite long) read.

And if you’re looking for quantum leaps in computing power, IBM announced late Friday two significant quantum processor upgrades for its IBM Q early-access commercial systems.

The first IBM Q systems available online to clients will have a 20 qubit processor, featuring improvements in superconducting qubit design, connectivity and packaging.

And the company has also successfully built and measured an operational prototype 50 qubit processor with similar performance metrics.

Clients will have online access to the computing power of the first IBM Q systems by the end of 2017.

In case you were wondering, a qubit, or “quantum bit,” is a unit of quantum information — the quantum analogue of the classical bit. But a qubit is distinguished by its being a two-state quantum-mechanical system, which allows a single photon both vertical and horizontal polarization.
You can read more in this blog post, “The future is quantum.”

Written by turbotodd

November 13, 2017 at 9:01 am

IBM Scientists Observe Elusive Gravitational Effect in Solid-State Physics

leave a comment »

An international team of physicists, materials scientists and string theoreticians have observed a phenomenon on Earth that was previously thought to only occur hundreds of light years away or at the time when the universe was born. This result could lead to a more evidence-based model for the understanding the universe and for improving the energy-conversion process in electronic devices.

Using a recently discovered material called a Weyl semimetal, similar to 3D graphene, scientists at IBM Research have mimicked a gravitational field in their test sample by imposing a temperature gradient. The study was supervised by Prof. Kornelius Nielsch, Director at the Leibniz Institute for Materials and Solid State Research Dresden (IFW) and Prof. Claudia Felser, Director at the Max-Planck-Institute for Chemical Physics of Solids in Dresden.

After conducting the experiment in a cryolab at the University of Hamburg with high magnetic fields, a team of theoreticians from TU DresdenUC Berkeley and the Instituto de Fisica Teorica UAM/CSIC   confirmed with detailed calculations that they observed a quantum effect known as an axial-gravitational anomaly, which breaks one of the classical conservation laws, such as charge, energy and momentum.

This law-breaking anomaly had previously been derived in purely theoretical reasoning with methods based on string theory. It was believed to exist only at extremely high temperatures of trillions of degrees, as an exotic form of matter, called a quark-gluon plasma, at the early stages of the universe deep within the cosmos or created using particle colliders.

But to their surprise, the researchers discovered that it also exists on Earth in the properties of solid-state physics, on which much of the computing industry is based on, spanning from tiny transistors to cloud data centers. This discovery is appearing today in the peer-reviewed journal Nature.

“For the first time, we have experimentally observed this fundamental quantum anomaly on Earth which is extremely important towards our understanding of the universe,” said Dr. Johannes Gooth, an IBM Research scientist and lead author of the paper. “We can now build novel solid-state devices based on this anomaly that have never been considered before to potentially circumvent some of the problems inherent in classical electronic devices, such as transistors.”

“This is an incredibly exciting discovery. We can clearly conclude that the same breaking of symmetry can be observed in any physical system, whether it occurred at the beginning of the universe or is happening today, right here on Earth,” said Prof. Dr. Karl Landsteiner, a string theorist at the Instituto de Fisica Teorica UAM/CSIC and co-author of the paper.

IBM scientists predict this discovery will open up a rush of new developments around sensors, switches and thermoelectric coolers or energy-harvesting devices, for improved power consumption.

Read more at: https://www.ibm.com/blogs/research/2017/07/scientists-observe-gravitational-anomaly-on-earth/

Written by turbotodd

July 19, 2017 at 1:57 pm

IBM Building First Universal Quantum Computers for Business and Science

leave a comment »

IBM announced today an industry-first initiative to build commercially available universal quantum computing systems.

“IBM Q” quantum systems and services will be delivered via the IBM Cloud platform.

While technologies that currently run on classical computers, such as Watson, can help find patterns and insights buried in vast amounts of existing data, quantum computers will deliver solutions to important problems where patterns cannot be seen because the data doesn’t exist and the possibilities that you need to explore to get to the answer are too enormous to ever be processed by classical computers.

IBM also announced today:

  • The release of a new API (Application Program Interface) for the IBM Quantum Experience that enables developers and programmers to begin building interfaces between its existing five quantum bit (qubit) cloud-based quantum computer and classical computers, without needing a deep background in quantum physics.
  • The release of an upgraded simulator on the IBM Quantum Experience that can model circuits with up to 20 qubits. In the first half of 2017, IBM plans to release a full SDK (Software Development Kit) on the IBM Quantum Experience for users to build simple quantum applications and software programs.

The IBM Quantum Experience enables anyone to connect to IBM’s quantum processor via the IBM Cloud, to run algorithms and experiments, work with the individual quantum bits, and explore tutorials and simulations around what might be possible with quantum computing.

IBM Q systems will be designed to tackle problems that are currently seen as too complex and exponential in nature for classical computing systems to handle. One of the first and most promising applications for quantum computing will be in the area of chemistry. Even for simple molecules like caffeine, the number of quantum states in the molecule can be astoundingly large – so large that all the conventional computing memory and processing power scientists could ever build could not handle the problem.

IBM’s roadmap to scale to practical quantum computers is based on a holistic approach to advancing all parts of the system. IBM will leverage its deep expertise in superconducting qubits, complex high performance system integration, and scalable nanofabrication processes from the semiconductor industry to help advance the quantum mechanical capabilities.

Also, the developed software tools and environment will leverage IBM’s world-class mathematicians, computer scientists, and software and system engineers.

Since its launch less than a year ago, about 40,000 users have run over 275,000 experiments on the IBM Quantum Experience. It has become an enablement tool for scientists in over 100 countries and, to date, 15 third-party research papers have been posted to arXiv with five published in leading journals based on experiments run on the Quantum Experience.

For more information on IBM’s universal quantum computing efforts, visit www.ibm.com/ibmq. You can learn more about the IBM Q API and SDK here.

IBM is making the specs for its new Quantum API available on GitHub (https://github.com/IBM/qiskit-api-py) and providing simple scripts (https://github.com/IBM/qiskit-sdk-py) to demonstrate how the API functions.

Written by turbotodd

March 6, 2017 at 8:15 am

From Lab To Fab: Silicon Nanophotonics Arrives In A Nanosecond

leave a comment »

Angled view of a portion of an IBM chip showing blue optical waveguides transmitting high-speed optical signals and yellow copper wires carrying high-speed electrical signals. IBM Silicon Nanophotonics technology is capable of integrating optical and electrical circuits side-by-side on the same chip.

Angled view of a portion of an IBM chip showing blue optical waveguides transmitting high-speed optical signals and yellow copper wires carrying high-speed electrical signals. IBM Silicon Nanophotonics technology is capable of integrating optical and electrical circuits side-by-side on the same chip.

It’s Monday, and here in Austin, Texas, it officially got cold overnight.

Yesterday, it was partly cloudy and almost steamy warm. And this morning, it’s like I was transplanted back to IBM’s Somers, New York, location, where the wind streams across the Westchester landscape and chills native Texans like me to their core.

But enough talk about the weather. I want to get to the topic of the day: Making little things that move information faster.

Earlier today, IBM announced a major advance in the ability to use light instead of electrical signals to transmit information for future computing.

The breakthrough technology — called “silicon nanophotonics” — allows the integration of different optical components side-by-side with electrical circuits on a single silicon chip using, for the first time, sub-100nm semiconductor technology.

Silicon nanophotonics takes advantage of pulses of light for communication and provides a super highway for large volumes of data to move at rapid speeds between computer chips in servers, large data centers, and supercomputers, thus alleviating the limitations of congested data traffic and high-cost traditional interconnects.

Big Light, Bigger Data

The amount of data being created and transmitted over enterprise networks continues to grow due to an explosion of new applications and services.

Silicon nanophotonics, now primed for commercial development, can enable the industry to keep pace with increasing demands in chip performance and computing power. Businesses are entering a new era of computing that requires systems to process and analyze, in real-time, huge volumes of information known as “big data.”

Silicon nanophotonics technology provides answers to big data challenges by seamlessly connecting various parts of large systems, whether few centimeters or few kilometers apart from each other, and move terabytes of data via pulses of light through optical fibers.

Building Proof Beyond Concept

Building on its initial proof of concept in 2010, IBM has solved the key challenges of transferring the silicon nanophotonics technology into the commercial foundry.

By adding a few processing modules into a high-performance 90nm CMOS fabrication line, a variety of silicon nanophotonics components such as wavelength division multiplexers (WDM), modulators, and detectors are integrated side-by-side with a CMOS electrical circuitry.

As a result, single-chip optical communications transceivers can be manufactured in a conventional semiconductor foundry, providing significant cost reduction over traditional approaches.

IBM’s CMOS nanophotonics technology demonstrates transceivers to exceed the data rate of 25Gbps per channel. In addition, the technology is capable of feeding a number of parallel optical data streams into a single fiber by utilizing compact on-chip wavelength-division multiplexing devices.

Learning More About Nanophotonics

The ability to multiplex large data streams at high data rates will allow future scaling of optical communications capable of delivering terabytes of data between distant parts of computer systems.

“This technology breakthrough is a result of more than a decade of pioneering research at IBM,” said Dr. John E. Kelly, Senior Vice President and Director of IBM Research. “This allows us to move silicon nanophotonics technology into a real-world manufacturing environment that will have impact across a range of applications.”

Further details will be presented this week by Dr. Solomon Assefa at the IEEE International Electron Devices Meeting (IEDM) in the talk titled, “A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications.”

You can learn more about IBM silicon integrated nanophotonics technology here.

Written by turbotodd

December 10, 2012 at 4:33 pm

Think Small: IBM Researchers Demonstrate Carbon Nanotubes, Potential Silicon Successors

leave a comment »

Since I posted about Hurricane Sandy earlier in the day, I’ve seen some pretty stunning pictures and video coming in, and heard more reports from friends in and around the New York City area.

The story of the crane toppling over on a very tall building being built on West 57th Street, between 6th and 7th Avenues (my old IBM office is at Madison and 57th, further east) was most stunning. You can find some of the pics or video on CNN.

While we wait to discover how big a problem Sandy presents to the northeast Atlantic coast, I’ll share with you a diversion focusing on a much smaller topic — but one with potentially huge implications.

IBM scientists recently demonstrated a new approach to carbon technology that opens up the path for commercial fabrication of dramatically smaller, faster and more powerful computer chips.

For the first time, more than ten thousand working transistors made of nano-sized tubes of carbon have been precisely placed and tested in a single chip using standard semiconductor processes.

These carbon devices are poised to replace and outperform silicon technology allowing further miniaturization of computing components and leading the way for future microelectronics.

Four Decades Of Innovation

Aided by rapid innovation over four decades, silicon microprocessor technology has continually shrunk in size and improved in performance, thereby driving the information technology revolution.

Silicon transistors, tiny switches that carry information on a chip, have been made smaller year after year, but they are approaching a point of physical limitation.

Their increasingly small dimensions, now reaching the nanoscale, will prohibit any gains in performance due to the nature of silicon and the laws of physics. Within a few more generations, classical scaling and shrinkage will no longer yield the sizable benefits of lower power, lower cost and higher speed processors that the industry has become accustomed to.

Carbon nanotubes represent a new class of semiconductor materials whose electrical properties are more attractive than silicon, particularly for building nanoscale transistor devices that are a few tens of atoms across.

Electrons in carbon transistors can move easier than in silicon-based devices allowing for quicker transport of data. The nanotubes are also ideally shaped for transistors at the atomic scale, an advantage over silicon.

These qualities are among the reasons to replace the traditional silicon transistor with carbon — and coupled with new chip design architectures — will allow computing innovation on a miniature scale for the future.

The approach developed at IBM labs paves the way for circuit fabrication with large numbers of carbon nanotube transistors at predetermined substrate positions. The ability to isolate semiconducting nanotubes and place a high density of carbon devices on a wafer is crucial to assess their suitability for a technology — eventually more than one billion transistors will be needed for future integration into commercial chips.

Hardly A Carbon Copy

Until now, scientists have been able to place at most a few hundred carbon nanotube devices at a time, not nearly enough to address key issues for commercial applications.

Originally studied for the physics that arises from their atomic dimensions and shapes, carbon nanotubes are being explored by scientists worldwide in applications that span integrated circuits, energy storage and conversion, biomedical sensing and DNA sequencing.

This achievement was published today in the peer-reviewed journal Nature Nanotechnology.

Carbon, a readily available basic element from which crystals as hard as diamonds and as soft as the “lead” in a pencil are made, has wide-ranging IT applications.

Carbon nanotubes are single atomic sheets of carbon rolled up into a tube. The carbon nanotube forms the core of a transistor device that will work in a fashion similar to the current silicon transistor, but will be better performing. They could be used to replace the transistors in chips that power our data-crunching servers, high performing computers and ultra fast smart phones.

Earlier this year, IBM researchers demonstrated  carbon nanotube transistors can operate as excellent switches at molecular dimensions of less than ten nanometers – the equivalent to 10,000 times thinner than a strand of human hair and less than half the size of the leading silicon technology. Comprehensive modeling of the electronic circuits suggests that about a five to ten times improvement in performance compared to silicon circuits is possible.

There are practical challenges for carbon nanotubes to become a commercial technology notably, as mentioned earlier, due to the purity and placement of the devices. Carbon nanotubes naturally come as a mix of metallic and semiconducting species and need to be placed perfectly on the wafer surface to make electronic circuits. For device operation, only the semiconducting kind of tubes is useful which requires essentially complete removal of the metallic ones to prevent errors in circuits.

Also, for large scale integration to happen, it is critical to be able to control the alignment and the location of carbon nanotube devices on a substrate.

To overcome these barriers, IBM researchers developed a novel method based on ion-exchange chemistry that allows precise and controlled placement of aligned carbon nanotubes on a substrate at a high density — two orders of magnitude greater than previous experiments, enabling the controlled placement of individual nanotubes with a density of about a billion per square centimeter.

The process starts with carbon nanotubes mixed with a surfactant, a kind of soap that makes them soluble in water. A substrate is comprised of two oxides with trenches made of chemically-modified hafnium oxide (HfO2) and the rest of silicon oxide (SiO2). The substrate gets immersed in the carbon nanotube solution and the nanotubes attach via a chemical bond to the HfO2 regions while the rest of the surface remains clean.

By combining chemistry, processing and engineering expertise, IBM researchers are able to fabricate more than ten thousand transistors on a single chip.

Furthermore, rapid testing of thousands of devices is possible using high volume characterization tools due to compatibility to standard commercial processes.

As this new placement technique can be readily implemented, involving common chemicals and existing semiconductor fabrication, it will allow the industry to work with carbon nanotubes at a greater scale and deliver further innovation for carbon electronics.

You can learn more in the animation below.

Written by turbotodd

October 29, 2012 at 8:02 pm

IBM Research Makes Advances In Quantum Computing

leave a comment »

Scientists at IBM Research have achieved major advances in quantum computing device performance that may accelerate the realization of a practical, full-scale quantum computer.

For specific applications, quantum computing, which exploits the underlying quantum mechanical behavior of matter, has the potential to deliver computational power that is unrivaled by any supercomputer today.

Follow the IBM Research blog for coverage to learn more about breakthroughs from IBM scientists.

Quantum computing has been a Holy Grail for researchers ever since Nobel Prize-winning physicist Richard Feynman, in 1981, challenged the scientific community to build computers based on quantum mechanics. For decades, the pursuit remained firmly in the theoretical realm. But now IBM scientists believe they’re on the cusp of building systems that will take computing to a whole new level.

Using a variety of techniques in the IBM labs, scientists have established three new records for reducing errors in elementary computations and retaining the integrity of quantum mechanical properties in quantum bits (qubits) – the basic units that carry information within quantum computing.

IBM has chosen to employ superconducting qubits, which use established microfabrication techniques developed for silicon technology, providing the potential to one day scale up to and manufacture thousands or millions of qubits.

IBM researchers will be presenting their latest results today at the annual American Physical Society meeting taking place February 27-March 2, 2012 in Boston, Mass.

The Possibilities of Quantum Computing

The special properties of qubits will allow quantum computers to work on millions of computations at once, while desktop PCs can typically handle minimal simultaneous computations.

For example, a single 250-qubit state contains more bits of information than there are atoms in the universe.

These properties will have wide-spread implications foremost for the field of data encryption where quantum computers could factor very large numbers like those used to decode and encode sensitive information.

Other potential applications for quantum computing may include searching databases of unstructured information, performing a range of optimization tasks and solving previously unsolvable mathematical problems.

Written by turbotodd

February 28, 2012 at 12:43 pm

%d bloggers like this: